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Properties of second kind polynomials, and, in particular, conditions for second
kind measures to be absolutely continuous are investigated. The asymptotic
representation for second kind polynomials is obtained. Examples of generalized
Jacobi weighted functions are considered. ,(' 1995 Academic Pres>. Inc.

I. INTRODUCTION

The theory of polynomials orthogonal on the unit circle was developed
by G. Szego, Va. L. Geronimus, and G. Freud (see their monographs [Sz],
[Gel], [Fr] and surveys [Ge2], [Ge3], [N]). We first recall the defini
tions as well as some results from this theory.

Let da be a finite positive Borel measure on the interval [- Jr, Jr] with
infinite support,

da(t) = rp(t) dt + da,(t)

be its Lebesgue decomposition. We call the function rp ELI [ - Jr, n] a den
sity function of the measure da. In what follows, LP stands for LP[ - Jr, n],
p:;:; I, and

Throughout the paper we denote (= e i1
, where t is a real parameter. We

write ck(da) for the moment sequence

ck(da)=(2Jr)-1 r (kda(t),
-If

k=O, I, ....
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Given a measure du, there exists a uniquely determined system of
orthonormal polynomials {({J"},, "" 0 such that

(2n) 1 r ({J,,(O <p",(Odu(t)=(jIl.m,
-1[

and

((J,,(:) = 1\,,:" + "',

The Caratheodory function (C-function)

n, III = 0, I, ... ,

1\,,>0.

(1.1 )

I InF(:) =- Sit, :) dart),
2nco -7[

e l
' +:

co=co(da), Sit, :)=---_,-, (1.2)
e( -z

is analytic in the unit disk 10 = {:: 1:1 < 1} and Re F(:) > 0 for: E 10_ If
:: = reiIJ and

then

1- r 2

P(r, x) = 0'

I - 21' cos X + 1'-

21' sin x
Q(r, x) = 0'

I - 21' cos X + 1'-

so that

1+ rell!! - I)

Sit, :)= I 1111-1) P(r, O-t)+iQ(r, fJ-t),
- re

I ·n i f1[
F(reil/)=--j P(r,O-t)du(t)+-- Q(r,O-t)da(t)

2nco -1[ 2nco -1[

= u( 1', 0) + iv( 1', 0).

For the C-function F

_ . .. ((J(B)
lim Re F(re/ II

) = hm u(r, B) =-d-
r-I-O r-l-0 co( a)

exists a.e. on [ -n, n], and the inversion formula is

(1.3 )

(1.4 )

u(B2+O)+U(02)

2
(1.5 )

where a(B) stands for a{[ -n, O)} (with regard to the relations (1.4), (1.5)
see, e_g_, [Ge2, Sect. II]). Note, also, that if the measure da has a mass
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point to, then the value er( {to} ) can be calculated by means of the relation
[Ge2, Sect. IS]

er({ to} ) = nco lim F(reilU)(l- r).
r _ ] -- 0

For the measures der in the Szego class, that is, when

r In a'(t) dt> -ex;,
-Jr

the principal tool is the Szego function

{ fJr (+.::: }D(a,.:::)=exp (4n)-1 --=-:lna'(t)dt.
-Jr ( -

(1.6 )

(S)

As is known (see [Sz, Chap. 10], [Fr, Chap. 5]), D(a)EH 2('UJ),
D(a, 0) > 0, and for the radial boundary values the relation

holds a.e. with respect to Lebesgue measure.
In the present paper we investigate the behavior of the so-called second

kind polynomials and measures (cf. [Gel, Chap. I], [Gol], [R]). The

second kind polynomials are defined by r/Jo(':::) = l/je;;,

I fJr .r/J ,,(.:::) = -2- S(t, .:::)[ !Pll( e") - <11,.(=)] da(t)
nco - Jr

=KIlZ" + "', n = 1, 2, .... (1.7 )

An important relation between the !Pll and t/J" is given by

n=O, I, .... ( 1.8)

Here the *-transform of an nth degree polynomial P is defined by

P*( z) = .:::" P( 1/=),

where the conjugation refers to taking the complex conjugates of the coef
ficients of the polynomial P. The polynomials t/J" are orthonormal with
respect to the uniquely determined second kind measure dr( t), that is,

(2n ) - I r l/J II «() l/Jm (() drU) = (j II. m ,
-Jr

n, m =0, I, ....
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co(dr) = co(da),

The moment sequences ck(da) and cddr) are related to each other by the
identities

2 k-I

ck(dr) = -ck(da)--'-A L c)da)ck_j(dr)
co(ua) j~l

(cf. [Ge2, Sect. 7]), whence follows the equality for the corresponding
C-function G,

1 J"G(z) =- S(t, z) dr(t) = {F(z)} -I,

2nco -"

where co=co(da)=co(dr) (cf. [Gol, p. 130]). Therefore (see (1.4))

lim Re G( re ill
) = lim Re{ u( r, 8) + iv( r, 8)} -I

r-1-0 r-I-O

and hence a.e. on [ -Jr, n]

r '(0) = c2 qJ(O)
o qJ2(8) + rp;(O)'

where

1 f"rp a ( 0) = lim - Q( r, 0 - t) da(t)
r-1-0 2nco _"

( 1.9)

( LlO)

(Lll)

(cf. [Gol, Lemma l], [R, p.l07]). The function rpa is called a conjugate
function to the measure da (if da is absolutely continuous, then rpa is just
an ordinary conjugate function to qJ = a' ). It is well known (cf. [Ge 1,
Chap. 8, Theorem 8.2]) that

We write daEAC[a, b], where -n~a<b~n, if the measure da is
absolutely continuous on [a, bJ, and da E A C( a, b), if for each interval
[a J' b1] c (a, b) the measure da is absolutely continuous on [a l' bI]
(da E A C means that the measure da is absolutely continuous on the whole
interval [- n, n]). As usual, we denote by C2J1 the class of continuous
2n-periodic functions on the real line. We write w(o, f) for the modulus of
continuity of a function f E C2", that is,

w(o,f)= sup If(x)-f(Y)I,
Ix-,'I "'''

X, yE [ -n, n],
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and w( 15, f; [a, b]) for the local modulus of continuity on the interval
[a, b],

w(o, f; [a, b]) = sup If(x) -f(y)l,
Ix y\ ~()

x,YE[a,b]. (I.l2)

This paper is organized as follows. In Section 2 properties of second kind
measures are studied, in particular, the absolute continuity of measure dT
on the interval [a, b]. Examples of Jacobi weight functions are examined.
In Section 3 the asymptotic representation for second kind polynomials
and functions is obtained. We should mention a recent paper [P], where
similar problems are treated (cf. Remark 2 after Theorem 3.2 below).

2. ABSOLUTE CONTINUITY OF SECOND KIND MEASURES

In this section we present the proof of the main result concerning the
absolute continuity of the second kind measure dT on the interval [a, b] in
terms of the "first kind" measure da (see Theorem 2.3 below).

We start with the following assertion, which is actually proved in [Ge I,
Theorem 3.10] (cf. [MNT, Lemma 4.2]).

LEMMA 2.1. Let 'PII be the orthonormal polynomials ~vith respect to
measure da. For all points of continuity °1 , 01 of the measure da

(2.1 )

LEMMA 2.2. If for a sequence A of positive integers and for (= e'l we
have ICf"JOI ,;;;, L for t E [ai' a1] and mEA, then

(2.2)

and dT E A C[ a I' a1].

Proof From the identity (1.8) with:; = ( it follows that

(2.3 )
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It is well known [ShTa, pp. 45-46] that in the mass point to of the
measure dr

'·X'

I 1t/t,,((oW=2n(r{to} )-1,
n=O

(2.4 )

and, in particular, Iim"_'L t/t,,((o) =0. The relation (2.3) means now that
the measure dr has no mass points on the interval [a I' a2]. Applying
Lemma 2. I to the measure dr, we obtain

what was to be proved. I

THEOREM 2.3. Let rp he a densit.v function of the measure da. If for some
p > I we have rp- I E U[ a, b ], [a, h] c [ - n, nJ, then dr E A C[ a, h].

Proof Let F( reiO} = u( r, O} + v( r, O} (see (1.3)), so that for the "second
kind" C-function G we have

( O·) ~ R G( ill) _ u(r, O} ~_I_g r, - e re -? 2---
u-(r, 0) + v (r, 0) u(r,O)

{
I. }-I= - f P(r, t-O) da(t}

2nco -.

{
I h . }-l

~ .-- f P(r, t - 8) rp(t) dt .
2nco a

We assume further that 8 E [a, h]. It can be readily shown (cf. [Z, Chap. 3,
Theorem 6.18J) that for 0 ~ r < 1 there exists a constant K = K( a, b) > 0,
depending on a and h only, such that the relation

1 h

-2 f P(r, t-fJ)dt~K,
n "

holds. By Schwarz' inequality we obtain

{
I fh dt }2K 2 ~ - P(r, t - O).j;(t) e:t::.

2n " v rp(t)

{
I h . }{ 1 h dt }~ - f P(r, t - 0) rp(t) dt -2 f P(r, t - fJ)~ ,

2n " n a rp( t)
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whence it follows that
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K 2 1 h dt
O~- g(r, O)~- f P(r, t-O)-,

Co 2n a qJ(t)

Let us define the 2n-periodic functions

() E [a, b].

( 0)
_ {g(r, 0), a ~ () ~ b,

gl r, - 0, Orna, b],

for t, OE [-n, n]. Then

K
2

I f" del'o~ - g(r, 0) ~-2 P(r, t - 0) qJl(t) dt = h(r, 0).
Co n -rr

The function qJ I E LP and

By W. Young's inequality [Z, Chap. 2, Theorem 1.15], glEU and

The latter relation along with (2.5) means that the set of functions
{g(r,,)} r~O is bounded in U[a, b].

Choose a subsequence g{ (r k ,·)}, converging in U[a, b], q-I = I _ P -I,

when r k l'1. Since limr~l_og(r,e)=colr'(e) a.e., then for every
a ~ HI < (}2 < b we have

Absolute continuity of the measure dr can be deduced now from the inver
sion formula (1.5). Thus Theorem 2.3 has been proved. I

Applying Theorem 2.3 we shall study the second kind measures dr,
corresponding to the generalized Jacobi weight functions It' on the unit
circle

where

N

da(t) = w(t) dt = h(t) n ,,-U 2y
, dt,

v=]

(2.6)

-n<t l < ... <tN~n, (2.7)
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and with respect to the "regular" factor h we assume that

359

h(t) > 0, (2.8)

THEOREM 2.4. Let l-V he the generali:ed Jacohi weight function (2.6 )-( 2.8)
and J = {tj : "j > D. Then dr E A C[ a, h] for each interval [a, b], containing
no points from J.

Proof Let l'=max{l'j: tjE[a, h]}. The case I'<~ is contained in
Theorem 2.3. The assumption (2.8) can be replaced here by h 1: IELf. (cf.
[N, pp. 35, 48--49] for the interval [ -I, I]). The case)' = ~ requires more
subtle considerations.

As was shown in the proof of Lemma 2.2 (see (2.3)), we have 1l/J,,(OI?:
lcotp,,(OI-I. Under the conditions (2.6)-(2.8) the inequality

Itp,,(O/ ~Al fI (Isin t-
2

t v
l +~)-;"

.-1 n

holds (cf. [B I, Proposition 2.2]). Hence, it follows that

(2.9)

(2.10)

It is easy to check that the measure dr is continuous (the mass points are
absent) in the interval [a, h]. Indeed, if l¥t v ' I ~v~N, then /l/J,,(O/?:
AJ>O, which leads to r({t})=O (see (2.4)). For t=t"E[a, b] we have
Il/J ,,( C) I ?: A 4 n - ;', and, since I' = ~ now,

x

L: Il/J,,(CW = oc,
n=O

which again leads to r( {I v} ) = O.
We use the limit relation (c( [Sz], [N, p. 70])

lim r" It/J,~(O-D-I((, rll 2 dr(t) =0.
/1- .... x .-1£

Since

r Il/J:(O-D' 1((, r)/2 dr(t)
-7[

= r Il/J,~(O D((, r)- Wdt+r It/J,~(O-D-l((, rW dr,(t),
-rr -T[

640:'1,0.1-5
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we obtain
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Thus there exists a sequence A = {O ~ n I < n2 < ... } such that the equality

lim II/!:'((W 2 = ID((, rW = r'(t)
m€.1

holds a.e. By Lemma 2.1,

(2.11 )

(2.12 )

for all U l , U 2 E [a, b]. Let tv < UI < U2 < t v+ I' By Lebesgue's Bounded
Convergence Theorem (see (2.10)) we obtain from (2.11), (2.12)

lim r Il/!m(()1- 2 dt= r r'(t)dt=r{[u 1 , U 2 ]}·
mEA u\ u\

Letting til \. tv and ti 2 l' t H I in the latter equality, we conclude that

I' = 1, 2, ..., N - 1,

and, therefore,

r r'(t)dt=r{[u l , U2]}
UI

for every U I' U2 E [a, b]. Thus, Theorem 2.4 has been proved. I

COROLLARY. Let w be the weight function (2.6H2.8). If

max Yj~ t
1 ~j~N

then the second kind measure dr E A C.

EXAMPLE. Consider the Jacobi weight function

Ir 4/1
+)'2 ( I 1)

Co = (2n) - 1 f w(t) dt =-- B YI + -2' Y2 +- ,
-Ir n 2
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where B( x, y) is the Euler beta function. In this situation the corresponding
C-function F(::;, w) can be expressed by means of the hypergeometric
function (cf. [L, Chap. 6])

~ (a)" (b)" -"
F(a, b; c; z)= 1+ L.

,,=1 (c)" n!'

In fact,

(x),,=x(x+ I) ... (x+n- I).

2ncoF(::;, w)=r P(r, O-t)w(t)dt+i r Q(r,O-t)M,·(t)dt,
-rr -R

and, since the weight function is even now, we have for::; = r, 0 < r < I, and
o< p = 4r(l + r) - 2 < I

ncoF(r, w) = fa" P(r, t) wit) dt

In (I-cos tV' (I +cos 1)J'2
=2)"+)'1(1-r2 ) dt

o I - 2r cos t + r 2

= 4)" +/2( 1- r2) II (I _X)),,-1/2 X)'2-
1
/2 dx

o (l+r)2-4rx

l-r .1 (l-x)",-1/2 X)'2- 1/2

= 4)1 + )'2 I + r t I _ px dx.

The Euler integral for the hypergeometric function (cf. [L, Chap. 6.2.3,
formula (I)]) gives

f
l (I -xV' ~ 1/2 x n - I /2 dx

o I-px

= B (}'I +~, 1'2 +DF (1, }'2 +~; 1'1 +}'2 + I; p).

Consequently, by the uniqueness theorem for analytic functions, we get

and for the second kind C-function G(::;, w) (1.9)
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respectively. For f'1 > ~ we have

c - b - a = (YI + )'2 + I) - (1'2 +!) = 1'1 -! > 0

so that, as is well known (cf. [L, Chap. 6.8, formula (I)]),

. (I 4x ) f', + 1'2
hm F 1, Y2 + -2; Y1 + }'2 + I; (I )2 =--I.

,~I -0 +x Yl-2

Hence
',' _!

lim G(x, w)( I - x) = 2 _1_1_2 > 0,
,--~l-O Yl+Y2

i.e. (see (1.6)), r({ O} ) > O.
In the special case f'1 = f'2 = Y the quadratic transform for the hyper

geometric function (c[ [L, Chap. 6.7, formula (3)]) leads to the following
expression for the C-function F(:;, w r), corresponding to the weight func
tion n)t) =4r Isin t1 2

,;

F(:;, w r )=(1-:;2)F(I, I-/,; 1 +),; :;2).

If}'=!, then (cf. [L, Chap. 3.1.1, formula (7)])

, ( 1 3 2) 1 _:;2 I +.:
F(.:, W,) = (I-.:-)F 1, 2; 2;': =~ log 1-.:'

By Theorem 2.4, the second kind measure dr is absolutely continuous and
the corresponding density function is equal to

rP(Bj = ISi~ 81 {IOg2!cot~! + :2fl

For y= I we have F(:;, W1)= 1_.:2, G(.:, w1)=(1-.:2)-I, and the second
kind measure dr has two mass points with r( {O} ) = r( { - n} ) = n.

3. ASYMPTOTIC REPRESENTATION FOR

SECOND KIND POLYNOMIALS AND FUNCTIONS

Under the asymptotic representation for the orthogonal polynomials we
mean the limit relation

lim rP,~(eiO)=D-I(eiO, r)
11 -+ ,x

uniformly on a closed set Eel = [ - n, n] (cf., e.g., [Go2, p. 147]). Here
we consider the asymptotic representation for the second kind polynomials
andE=[a,b).
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The assertion we begin with may be regarded as a local analog of
Zygmund's inequality (cf. [Z, Chap. 3, Theorem 13.30]) for conjugate
functions.

LEMMA 3.1. Let [a, b] cI= [-n, n). Let the measure dlTEAC[a, b]
with the density function <p = IT', continuous on [a, b l Assume that for the
local modulus of continuity w( t, <p; [a, b]) (1.12) the inequality

wit, <p; [a, b]) ~wo(t)

holds, "'here the continuous function Wo satisfies the Dim' condition

(3.1 )

flO wo(t) d
-- t< w,

o t
O<to<min(l, b-a). (3.2)

Then the conjugate function iP" (1.11) is continuous in the open interval
(a, b) and for each interval [a I' bI] c (a, b) there is a positive constant
K=K(lT, a J , b l ) such that

ft ft" wo.( v)= K du --,- dv.
o u v-

Proof Consider the 2n-periodic functions

f((J)=S<P(O), (JE[a, b],
10, O\Ha, b],

(J
{

<P(O) BE[a,b],
g( l=

go((J), B¢[a, b],
BEl.

The function go here is a linear function, such that g E C2". It is easy to
check that

w(t, g) = O(w(t, <P; [a, b])), (3.4 )

We assume further that BE[a!, b l ). Then, putting I'=I\[a, b], we have
a.e. (see (1.11))

1 f"coiP<7(O)= lim -2 Q(r, B-t)dlT(t)
r~I-O n _"

{
I JI> 1 . }= lim -2 Q(r, O-t) <p(t)dt+-j Q(r,O-t)dlT(t)

r ~ I - 0 n a 2n l'

- 1 J (J-t -= f((J) +-2 cot - dlT(t) = flO) + fl(O),
n l' 2
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where J is an ordinary conjugate function to f, and

Similarly, we get

(3.5 )

with the same property (3.5) for w(t, g,; [a l' b,]). Therefore,

(3.6)

and by (3.5), (3.4), (3.2), epa is continuous on (a, b) (cf. [Ga, Chap. 3,
Theorem 1.3]). Moreover,

Applying Zygmund's inequality to the function g (see (3.1), (3.4), (3.2))
and considering (3.7), we reach the inequality (3.3). I

THEOREM 3.2. Let the measure da belong to the S::ego class,
da E AC(a, b). Let the density function qJ be positive and continuous in the
open interval (a, b) and let

fto w(t, rp; [a" b,]) I 1 dtog - < OJ,
ott

0< to < mini I, b] -a l ), (3.8)

hold for each interval [a" b I] c (a, b). Then the second kind measure dT
belongs to the S::ego class, dT E A C( a, b), the second kind density function
tIt( t) is positive and continuous on (a, b), and

flO w_(t_'--e.tIt_;-=[,-a-=-,_,_b-,-,']=-.) dt < oc.
o t

The asymptotic representation

fl-X

holds uniformly inside (a, b).

(3.9)

(3.10 )

Proof As was mentioned in Section 1, the measures da and dT belong
to the Szeg6 class simultaneously. According to (l.l 0), a.e. on [ -77:, 77:]

(3.11 )
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Hence, by Lemma 3.1, l/J is positive and continuous on (a, b). The conclu
sion dr E A C( a, b) is now an immediate consequence of Theorem 2.3.

Next we turn to the relation (3.9). It can be readily shown from (3.11)
that

In order to establish (3.9) we need to estimate the second term in the right
hand side of (3.12). Because of the assumption (3.8) we can apply the
inequality (3.3),

I
IO w(x, rp,,; ~aj' bj]) dx~K IIO d.~ IX dt IIO w(u, rp; ~al' bl] du
().\ () .X () I U

_fro W(II, rp; [aj, hI]) IU I ~ d d
- 2 og t II < 00,

() II () t

which leads to (3.9).
V. M. Badkov proved (cf. [B2, Theorem 2]) that the asymptotic

representation (3.10) holds uniformly inside (a, h) provided the measure dr
satisfies (S), drEAC(a, h), t/J(t)=r'(t) is a positive and continuous func
tion on (a, h), and for each [a I' b j ] C (a, h) the local modulus of con
tinuity w(t, t/J; [aI, h j ]) satisfies the Dini condition (3.2). Thereby the
proof of Theorem 3.2 is completed. I

Remark 1. If the measure d(J E A C, the density function rp is positive
and continuous in [ -Jr, Jr], and

J
.. I w(t, rp) lId

og- 1<00,
() 1 t

then the asymptotic representation (3.10) holds uniformly on the whole
circle.

Remark 2. In [P] the asymptotic behavior for the second kind
functions

g,,(:, d(J)
rpn(:) F(:) + t/J,,(:) r (- d) = rp:(:) F(:) - t/J,~(:)

111 -, a _"+ I

lim h,,( (, da) = 0

is studied. Theorem 3.2 gives more general conditions (cf. [P, Remark
2.l(b)]) for the relations (cf. [P, formula (2.19)])

2
lim g,,((, da) = - D((, da),

Co

to hold uniformly inside (a, h).
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